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Boost action on external field problems 

Gebhard Griibl and Raimund Vogl 
Institut fiir Theoretische Physik der UniversitPt Innsbruck, A-6020 Innsbruck, Austria 

Received 2 September 1991 

Abstract. We study the behaviour of chiral fermions in two-dimensional space-time with 
an external potential under the action of Lorentz boosts. Quantization of the system such 
that the incoming field is in the physical vacuum representation of the fermionic field 
algebra associated with the canonical anticommutation relations (CAR) algebra, makes 
time evolution and boosts unitarily implemented at all times. T h e  models are shown to 
possess an instantaneous particle interpretation in exceptional cases only. In the cases they 
do, in general this propeny is destroyed by boosts. Thus boost invariance of instantaneous 
YICUB, as has been conjectured receniiy, can be ruied out. 

1. Introduction and conclusions 

Particle number operators in general quantum field theory are derked from the basic 
objects of the theory, the quantum fields, in a rather indirect way. It is only via the 
associated asymptotic fields that such observables can be introduced. They represent 
the numbers of well separated particles which asymptotically constitute a scattering 
experiment. For non-free models no generally accepted particle number operators for 
intermediate times so far exist. This state of affairs has been considered disturbing and 
attempts have been made to identify such quantities and thereby establish an instan- 

For an otherwise free Dirac field in static external potentials the problem is solved 
by adopting for :he algebra of canonical anticommutation relations (CAR) algebra the 
physical vacuum representation, which is associated with the static c-number dynamics 
to be quantized [ 11. Further generalization to time dependent potentials has been 
proposed in [Z-41. The crucial object for the construction of an IPI is the instanteous 
vacuum: an instantaneous number operator exists if and only if (iff) the instantaneous 
vacuum does so [ 5 ] .  

Recently it  has been argued (in a space-time dimension independent way) that 
instantaneous vacua are invariant under Lorentz boosts [ 6 ]  and this has been advanced 
in support of their physical relevance. On the other hand, in the case of 4~ spacetime 
this relevance was denied long ago by other authors [ 7 ] ,  who reported instantaneous 
vacua to be changed by boosts. 

Closer inspection of the two papers leaves it unresolved as to which one is right. 
The first [6] invokes Taylor expansions without having control over the terms to be 
dropped. In the latter [7] a proof is given that boosts are not implemented unitarily 
at the second quantized level, for non-zero regular external potentials. This fact 
however, neither rules out the existence of a boosted instantaneous vacuum nor does 
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it imply its boost dependence, as has been observed in [?I. It is then stated in U ]  
without proof that instantaneous vacua are boost dependent. 

The crucial criterion which needs to be checked is as follows [ 7 ] .  The time xO-vacuum 
of an external field problem with potential A is invariant under a boost x iff the 
one-particle space boost operator L(xo,  x, A )  intertwines between the positive spectral 
projections of the external field Hamiltonian h(xo,  A) and the boosted one h(xo,  xA): 

G Griibl and R Vogl 

e( i r (x ' ,xAj j i (xo, , ,  A j = i ( x ' , , ,  A j e ( h ( 2 ,  A j j .  

This relation seems unlikely to be valid, since (even for A = 0) the boost operators do 
not intertwine in the nai've sense between the c-number Hamiltonians of the original 
and the boosted dynamics (cf equation (2.19)) ,  i.e. h(x ' ,xA)L(x ' , , y ,A)#  
L(xo,  x, A)h (xo ,  A).  Nevertheless for zero external potential the projection-intertwining 

vacuum. One therefore needs to construct an explicit A f 0 counterexample to the 
projection-intertwining relation in order to confirm boost dependence of instantaneous 
vacua and refute their reported boost invariance. Here we will do  so in a simple 2~ 

setting. 
We study the Lorentz transformation properties of the IPI  for a class of very simple 

and explicitly solvable models. They describe chiral Dirac fermions in 2~ space-time 
influenced by an external electromagnetic potential ofcompact support. Related models 
have been investigated in [8,9]. Our findings are this: an IPI exists for very special 
external fields and then in general for few discrete instants of time only. This contrasts 
with the 4~ case, where an IPI has been established for a large class of even irregular 
potentials [7 ] .  Furthermore, whereas boosts are in general not unitarily implemented 
in 4~ [7 ] ,  they turn out to be implementable in our case. However, we find that they 
destroy the property of an (exceptional) model to possess an IPI. A fortiori boost 
invariance of instantaneous vacua can definitely be ruled out in ZD space-time, as a 
boosted vacuum in general does not even exist. Furthermore we make it explicit that 
existence of an IPI  is gauge dependent. 

re!&?!! he!& and in h c t  imp!ies the wc!! knnwn bnnst i"?ari.nce nf the Free &!d 

2. The c-number model 

Projecting the zero mass Dirac equation in ZD Minkowski space-time with a minimally 
coupled external electromagnetic potential onto its positive chirality part yields the 
following wave equation: 

i - ' Y ( x ' , x ' ) = ( - i l - A ( x ' , x ' )  J a 
Jx' ax 

Here A E  %,(R2:R) (i.e. A is continuous and of compact support) is assumed. The 
connection of A with the Cartesian coordinate frame components of the electromagnetic 
potential is: A = A,+ A , ,  Equation (2.1) is interpreted quantum mechanically as an 
evolution equation in X:= L2(Iw:C),  the Hilbert space of Cauchy data to equation 
(2.1) with the usual scalar product: 

( f ,  g ) : =  dx'f(x?*g(x ' ) .  
R 
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The corresponding Hamiltonians we denote as follows: 

a 
J x  

h(xo, A) := -i 7- A(xo, Q )  (2.2) 

. a  
h , : = - i -  

Jx" 

Here 0 is the multiplication operator ( Q f ) ( x )  := x f ( x ) .  

u(xo,A):'€'(O; .) c-) 3(xo,  .), can be given explicitly: 
The dynamics {u(x" ,  A)/X'E@} on %,associated with (2.1) via the linear mapping 

(2.4) 

Y(x",x'):= J dfA(f , f+xl -xO) .  (2.5) 

In order to prove equation (2.4) one simply checks that the given expression for 

u ( x O ,  A) = eir(xO.Q) e-ixaho 

f ' O  

0 

u(xa, A)  solves the defining evolution equation 

i ~ u ( x o , A ) = h ( x o , A ) u ( x o , A )  d 

and obeys the initial condition u(0 ,  A) = Idx. 
The incoming Moller wave operator with respect to the free (A=O) dynamics is 

defined by W:= s-lim u(t ,  A)* e-": for t +  -00. From equations (2.4) and (2.5) we 
conclude that in terms of w(x):=J--dfA(.$ f + x )  it reads 

(2.6) 

Obviously W is unitary, a property we shall need later on. This unitarity can be traced 
back to the finite interaction time inherent in A E  Vo (R': R). 

Let us now consider the action of the restricted Lorentz group L! 5 (R, +) of boosts 
on various objects of the c-number model. (For the sake of conceptual clarity we shall 
exclusively adopt the active point of view and never bring into the discussion a change 
of coordinates.) The primary group action is the boost representation of (R, +) on 
Minkowski space: 

w =  eCw(Ql 

cosh(x) sinh(,y) 
sinh(x) cosh(,y) 

A r m r i n t P A  &th (7  1)  ir the rhirsl hone+ renrr~mtnt inn nf IR +\ nn the filnrt;nn en.,cD 
4 . 1 "  --.I.-I ...... ,-..,.I L.. l-.... I. ---". .Ir.-"-...LL..".. ". ,"", , ."..-..".l 1~"'* 
V1(Rz:C) defined by 

(xY)(x) := ex'*'€'(X-'x). (2.8) 

Note that x-lx = (-x)x. The factor e X i 2  derives itself from the original spinor rep- 
resentation of the Lorentz group before projecting onto the positive chiral component 

For A=O only the representation (2.8) stabilizes the set of solutions to equation 
(2 . l ) ,  while this is not the case for A # 0. The general case is this: iff Y solves equation 
(2.1) then ,yY solves equation (2.1) with A replaced by xA. 

i t  ... i l l  + .. ." _. . r  +- h- FIII IIh.t.,ininn  nit^-., hn-o+ --PI.O+-.~ :- W 
Pll" I ,  W l l ,  L u l l ,  "U, L" "C YL'.O.,C 1". ""LO."1L.b " 1 . 1 . O L J  """DL " p , L P L " , "  111 <b. 

(xA)(x) := e-'A(x-'x). (2.9) 
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Therefore the Hamiltonian family generating the time evolution of XY is given by 
{ h (xu, xA)/x0 E R}. 

By means of formula (2.4) for the time evolution operators u(xo,A) for any 
A E  e0(R2:R) we can derive an explicit formula for the boost operator L(xo, x, A) on 
2, which is defined to map the xO-Cauchy datum Y(xo,  .) of a solution to equation 
(2.1) onto the xu-Cauchy datum ( x Y ) ( x o ,  . )  of the boosted solution. To do so we 
express, by means of equation (2.4), an arbitrary solution to equation (2.1) in terms 
of its Cauchy datum at time zero: 

(2.10) 

(2.11) 

G Griibl and R Vogl 

qJ(x0, x') = e'Y'"O.X"Y(O, x' - 

(xY)(xo, x') = ei'X')(x)ex/2\y(0, e"(x'-xO)). 

eX12W(0, ex(x'-xo)) ={e-'x"oX(x)~(o, .)}(XI) (2.12) 

Now let x operate on Y. By means of equation (2.10) we get 

Here Y E  q0(R2:R) is given by equation (2.5) and (xy)(x):= ~ ( x - ' x ) .  Observe 

where X(x)  is the unitary operator on X defined by 

(X(x)f)(x') := exlzf(exx'). (2.13) 

X(x) is known from non-relativistic quantum mechanics as the squeezing transforma- 
tion [lo] of the  canonical pair (Q, P:= ho): 

Z(x)*QX(x) =e-"Q X(x)*PX(x) =eYP. (2.14) 

Equations (2.11) and (2.12) can be combined into 

( X W  x) = {ei(x~i(xi e -ir"h a X ( x ) W ,  . ) W ) .  (2.15) 

Now we express " (0 ,  . )  in (2.15) by means of equation (2.4) in terms of "(xu, .). 
Thus we obtain the boost operator explicitly as follows: 

~ ( ~ 0 ,  x, A) = ei(xvl(x'.Q) e-ixQh eirOho e-ir(x',Q) (2.16) 

L(xo, x, A)  is unitary due to the factor ex" which appears in Z(x) and which can be 
traced back to the representation (2.8). 

Obviously L(xo,  x, A) depends on the external potential A and xu. For A = 0 the 
mapping x r* L(x", x, 0) constitutes a unitary representation of the boost group (R, +) 
on X, which thus appears as a symmetry group of the model. For A # 0 it does not 
so: L(xo, x2, A)L(xo, x , ,  A) # L(xo, xl+,yl, A). On the energy momentum operators 
P":= h,:= P' of the free model the boost operator L(xo, x, 0) implements, due to 
equation (2.14), the boost transformation of a right upper or left lower light-like vector: 

(2.17) L(x', x, o)*P'L(xo, x. 0 )  = e*P'. 

From equation (2.17) the positive spectral projection intertwining relation 

L ( x ~ , ~ , o ) * B ( P ~ ) L ( x 9 x , o ) =  S(P0) (2.18) 

is immediate due to ex > 0. For non-zero A the boost operator L(xo,  x, A) intertwines 
between h(xo, A) and h(x",xA) in the following non-nai've way: 

> 
(2.19) 

Equation (2.19) follows by differentiating the equation u(x0,xA)L(O, x, A) = 
L(x", x, A)u(x", A )  with respect to x". 

d < I  

h(x", xA) = ( ( i 2  Ux", x. A)) + Ux0,  x, A)h(xo, A)]L(xo, x. A)*. 
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3. The second quantized model 

The quantization of a linear spinorial wave equation like equation (2.1) may be done 
in an efficient and precise way by means of C*-algebraic techniques [l, 7-91. We shall 
do so. The primary concept is the CAR-algebra % associated with the Hilbert space Z' 
of the c-number model and the canonical equal time anticommutation relations [ 111. 
2l is generated by the image of %'under an antilinear injection a of 2 into ??L and its 
unit element is denoted ea. The anticommutation relations state that for any 1; g in 
%' it holds that 

{ a  (f), a(g)*} = (1; d e n  {a(f) ,  a(g)} =O. 
Any orthogonal decomposition of %'= Z'+O Z'- generates a quasifree, pure, gauge 
invariant state w p  on VI: 

+(a(f.). . . a(f i )a(gl)*.  . . a(g,)*):= S., det((f;, &,)I. (3.1) 

Here P is the orthogonal projection of %' onto w. The Gel'fand-Naimark-Segal 
(GNS) construction associates (up to isometrical equivalence) with w p  a representation 
I Ip : 2l -t 2'(Sp) of % in the concrete C*-algebra of linear bounded operators on a 
representation space Fp. We denote Y p ( f )  := I I , ( a ( f ) ) .  Inspection of wUm., with U 
being a unitary operator on %', shows that the representation a ( f ) ~ V , ( u * f )  is 
isometrically equivalent with ITum., i.e. there exists an isometry r: Sp + Sufi. with 

In order to construct a quantum field W which solves equation (2.1) in the distribu- 
tional sense one may identify the restriction of Y to an arbitrary initial time with Y, 
and let the time evolution (2.1) act on it in order to define a Heisenberg picture field. 
This amounts to defining for allf in %' (with initial time zero) [l]: 

rv,(u*f) = ~ ~ ~ . ( . f ) r .  

Y[x0,f]:=Yp(u(xo, A ) * f ) .  (3.2) 

The proper choice of P is drawn from the condition that Y[x0,  '1 coincides with the 
free relativistic positive energy zero mass field at times before the external potential 
acts on it. Thus the Lehmann-Synzanzik-Zimmermann (LSZ) initial condition 

Yp(u(x0, A ) * f ) - Y , , ( u ( x O , O ) * f ) = O  (3.3) 

is assumed to hold for all xo< -T<O [7]. Here T >  0 is chosen to obey supp(A)c 
[-T, T]xR and Po:= B(ho) is the positive spectral projection of the free c-number 
Hamiltonian. Equation (3.3) fixes P := PI. := WP, W* with W being the incoming wave 
operator from equation (2.6). 

We shall now study the Heisenberg picture dynamics, which is encoded into the 
quantumf ie ldY[~~ , f ] :=Y~. (u (x~ ,  A)*f).Theprimequestionis whetheranassociated 
Schrodinger picture exists, i.e. whether there exists a unitary dynamics 
{ r , , , ( u ( x o , A ) ) / x o E R )  on the representation space FP,", which obeys for allf  in Z' 
and all xo in R 

Tp, , (U(xO, A))*Y,"(f)r ,"(u(x",  A ) )  = 'Uxo, f l .  (3.4) 

To decide on the existence of rp ,n (u(x" ,  A ) )  we observe that (for any orthogonal 
projection P and any unitary U )  a unitary rp( U )  exists iff IT, and IIufi* are isometrically 
equivalent. Now two representations IIp, and IT, are isometrically equivalent iff P, - 
P2e HS, i.e. are Hilbert Schmidt operators [12]. Obviously PI - P 2 0 P ,  - P2e HS 
defines an equivalence relation among the orthogonal projections of Z'. (An equivalent 
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condition to P , - P 2 ~  HS reads: P,(Id,-P,)EHS and P,(ld,-P,)EHS [13].) Thus 
IIen and ~ u ( r o ; A ) q n u ( x O : a ) '  are isometrically equivalent iff u(x", A)Pi,u(xu, A)* - Pjn. 
Expressing u(xo, A) by (2.4) and := WPU W* by (2.6) yields the equivalent condition 
po- e!A(ro.Qlpn e-iAli'.Ql with A(x", Q):= y(xu, Q)-w(Q)+w(Q-x"Idx). Whether 
this latter condition is fulfilled can be decided for A E  %?(R2:R) by means of the 
following criterion [141. Let (YE  %:"(W:W) with (Y'E%F(R:R). Then it holds that 
p o - e i m ( Q l p  -i=(Ql On(m)-n ( -K~)E2aP .  It is immediate to check that, due to 
A E  %Y(R2:W), the functions y(xo, .)  and w( .), and therefore A(x", ' )  are also of the 
type %?(R:R). Thus the equivalence eiA~x",PIPne~'A~'O~Q)-Pn is seen to hold for all 
x . In this way we conclude that the Heisenberg picture time evolution 
Y[O, '1 ++ Y[x", '1 is unitarily implemented at all times, thereby giving rise to an 
associated Schrodinger picture. 

An (instantaneous) particle interpretation at time x" for a quantum field q with 

to Ye(h(xo,Al)( . )  [3,4,7]. An ample discussion of the physical reasoning which leads 
to this definition is given in [4]. The crucial fact is that the 'frozen' c-number dynamics 
{e-i(ro-t)h(t.A) /X"E W), tangential to {u(x". A)/x'E R} at time 1, is unitarily implemented 
on Y[ 1, '1 such that its generator is bounded from below and has a normalizable ground 
state vector, iff Y[r, .] is isometrically equivalent to Yy,(,,,A,l( . )  [3, IS]. 

$h.& 
u(xo, A)Pj.u(x", A)*- O(h(x", A)), or more explicitly u(xo, A) WPuW*u(xo, A)*- 
8(h(x", A)). Since we already know from the unitary implementability of the time 
evolution that u(x", A) WP, W*u(xo, A)* - Po it suffices to check Po- O(h(x", A)). We 
now make use of the unitary equivalence between h, and h(xo, A) which reads 

G G i b 1  and R Vogl 

o e  

n 

*I.- L L l r  A....̂ .,.."" "JL,'Aua {x<x", A::x"ER: is said :c? exis: iET[xO, :] is isome:;ica::y zqi?<a:eiii 

!fi order to see whether v has a part.i& intprpr$?atififi t ime .xu w p  have 

(3.5) 

n(x", x') := dcA(x", 5). (3.6) 

h(xO, A) = ebx'Xo.Q)h, e-30(Xo.Q) 

r 
Thus Po- O(h(x", A)) amounts to Po-e'"'x"QIPu e-ia(rO,Q'. Applying the criterion of 
Hermaszewski and Streater [14], we obtain due to A E  %F(R2:R): Po- O(h(xo,A))G 

dx' A(x", x') E 2aZ.  Therefore the field Y has an IPI in the case of very special 
choices for A and at discrete instants of time only. In particular the existence of an 
IPI is unstable under gauge transformations. 

Iff Y[xo, ' 1  has a particle interpretation, the instantaneous vacuum n(x") with 
Iln(x")ll = 1 exists, n(x") is the ground state to the second quantized dynamics, which 
is obtained by implementing {e-ih(xY~A)'/t E R} on Y[xo, . ] and is, up to a phase, defined 
by decomposing Y[x", . ] into instantaneous particle destruction and antiparticle 
creation parts 'i'[xo,fj =*[x', 6(h(xQ, A))fj+Yjx- ,  a(-n(x-, A))JJ .  Tnen for aii f 
in 2c' [3]: 

" ^, . , 0 .\\ ,.1 

Yy[xo, O(h(x", A))f]n(x") = O  (3.7) 

Y[x0, O(-b(x", A))f]*n(x") = 0. (3.8) 

Note that due to equation (3.5) Id,-O(h(x", A) )=  O(-h(xo, A)). 
We shall now study the action of a boost x on the various objects of the second 

quantized model. The primary action is the boost action (2.8) on the quantum field 
Y. In the smeared form of the present formalism this reads 

(xY)[xo,fl:= Y[xo, L(x",x. A)*fl. (3.9) 
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xY has the dynamics {u(x", x A ) / x o ~ W } .  Its incoming asymptotic field is, due to the 
compact support of A, again a free relativistic positive energy zero mass field. 

Let us see whether (xY) [x" ,  '1 and Y [ x o ,  ' 1  are unitarily equivalent. To this end 
we have to check 

L(x0,X,A)u(xo, A) WPOW*u(xo, A)*L(xo, x,  A)* - u(xo,  A )  WP,,W*u(xo, A)*. 

Since u(xo, A) WP, W*u(xo, A)* - Po, it suffices to check L(xo, x, A)PoL(xo, x,  A)* - 
Po. Due to the compact supports of y(xo ,  .) and xy(x0 ,  ' ) th i s  condition can, by means 
of equation (2.16), be further simplified to L(xo, x ,  O)PoL(xo, x, O)*- Po.  Equation 
(2.17) implies that a free boost L(xo, x, 0) stabilizes the positive and negative spectral 
parts of h, and therefore L(xo, x,  O)PoL(xo, x,  0)* = Po holds. Thus we have arrived at 
the result that for A E  U?(R*:R) boosts are unitarily implemented on the field Y at 
all times. This stands in sharp contrast to the absence of implementability of boosts 
in the case of a massive Dirac field in 4~ space-time with a non-vanishing regular 
external field [7]. 

Next we investigate the behaviour of an IPI under boosts. Let A E  %r(R2:R) obey 
for all x': 

+m 

[ dx' A(xo, x ' )  = O .  (3.10) 
J -m 

Because A is continuous, equation (3.10) is necessary and sufficient for Y to have an 
IPI for all xu. Since the boosted field XY has the dynamics {u(xo ,  x A ) / x o e  R), x Y [ x o ,  ] 
has an IPI at time xo if it is isometrically equivalent to Ys(h(xo,xa))( .). The boosted field 
at time xo is in the oNs-representation characterized by UPuCI* with U:= 
L(xo, ,y, A)u(xo,  A) W. Thus XY has an IPI at time xo iff 

UPQU*- O(h(xo,xA)) .  (3.11) 

Since we already know from the implementability of boosts that UPoU* - Po, equation 
(3.11) is equivalent to Po- O(h(xo,XA)),  which holds iff 

r+mdx'(x'+(xo, E 27ih. (3.!2) J -m 

That equation (3.12) is in general not valid can be seen as follows. If (3.12) were 
to hold for all xo and x, the integral would have to be zero for all xo and x by continuity. 
If we differentiate (3.12) with respect to ,y at x o = x = O  we obtain as a consequence 
I 'zdx' x' (J /Jx~)A(O,  x ' )  = O .  Take now for instance A(xo, x ' ) := f (x")g (x"+x ' )  with 

X I >  0 .  Then equation (3.10) is valid for all xo. Yet integrating x ' (a /J~")A(o ,  x ' )  yields, 
due to x ' g ( x l ) a O ,  

:oi;-ieiox g c  T?(R:R) such :ha:f'(!$+Q, s(-r')=-g(z') 2nd ,-(X')"Q he!& fer 

tm J t m  

dx'  x '  7 A(0, x i )  =f (O)  dx' x 'g (x ' )  #O I-- Jx  L 
which thus rules out equatlon (3.12). i n  this way we conciude that even for a potentiai 
which causes Y to  have an IPI for all times this property in general does not hold for 
the boosted field xY.  

Finally we comment on the exceptional choice for A such that both Y[xo,  . ]  and 
x Y [ x o ,  '1 have an IPI. Here one can study the relation between n(xu), determined by 
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equations (3.7) andd (3.8), and the instantaneous vacuum x n ( x ' )  of x t [ x 0 ,  ' 1 .  xn(xo)  
obeys for all f in &": 

G Gliibl and R Vogl 

( x v ) [ x " ,  e(h(x",  x A ) ) f l x W x ' )  = 0 

W ' ) [ x o ,  e( -h (xo ,  x A ) ) f I * x n ( x " )  =O. 

(3.13) 

(3.14) 

Equations (3.13) and (3.14) are by definition of xV equivalent to the following ones, 
which hold for all f in W: 

(3.15) 

(3.16) 

The boosted vacuum xn(x')  coincides with f2(xo) (up to a phase) iff the positive 
spectral projections involved in (3.7) and (3.15) coincide. Thus the condition for boost 
: :.- .. .P n,..o\ ... A. LnVarlarlcr "L A'(* , KL.*"b 

W x o ,  U x o ,  x, 4 * @ ( h b 0 ,  x 4 ) f l x N x 0 )  = O  
'Y[x0, L(x0, X ,  A)*S(-h(xo,  x A ) ) f l * x n ( x O )  = 0.  

U x 0 , x ,  A ) * N h ( x o ,  x A ) ) U x ' ,  x, A )  = e ( h ( x o .  A ) ) .  (3.17) 

Since 8(h(xo ,  A))- Po and L(xo, x, A)P,,L(xo,x, A ) * -  Pa equation (3.17) has a chance 
of being fulfilled only in the case O(h(x", x A ) )  - Po. This latter equivalence, however, 
has been ruled out as being generally valid. 
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