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Boost action on external field problems

Gebhard Griibl and Raimund Vogl
Institut fiir Theoretische Physik der Universitdt Innsbruck, A-6020 Innsbruck, Austria

Received 2 September 1991

Abstract. We study the behaviour of chiral fermions in two-dimensional space-time with
an external potential under the action of Lorentz boosts. Quantization of the system such
that the incoming field is in the physical vacuum representation of the fermionic field
algebra associated with the canonical anticommutation relations {CAR) algebra, makes
time evolution and boosts unitarily implemented at all times. The models are shown to
possess an instantaneous particle interpretation in exceptional cases only. In the cases they
do, in general this property is destroyed by boosts. Thus boost invariance of instantaneous
vacua, as has been conjeciured recently, can be ruied out.

1. Introduction and conclusions

Particle number operators in general quantum field theory are derived from the basic
objects of the theory, the quantum fields, in a rather indirect way. It is only via the
associated asymptotic fields that such observables can be introduced. They represent
the numbers of well separated particles which asymptotically constitute a scattering
experiment. For non-free models no generally accepted particle number operators for
intermediate times so far exist. This state of affairs has been considered disturbing and
attempts have been made to identify such quantities and thereby establish an instan-
taneous particle interpretation {(1p1) at least for linear external field problems.

For an otherwise free Dirac field in static external potentials the problem is solved
by adopting for the algebra of canonical anticommutation relations (CAR) algebra the
physical vacuum representation, which is associated with the static e-number dynamics
to be quantized [1]. Further generalization to time dependent potentials has been
proposed in [2-4]. The crucial object for the construction of an tpt is the instanteous
vacuum: an instantaneous number operator exists if and only if {iff) the instantaneous
vacuum does so [5].

Recently it has been argued (in a space-time dimension independent way) that
instantaneous vacua are invariant under Lorentz boosts [6] and this has been advanced
in support of their physical relevance. On the other hand, in the case of 4D spacetime
this relevance was denied long ago by other authors [7], who reported instantaneous
vacua to be changed by boosts.

Closer inspection of the two papers leaves it unresolved as to which one is right.
The first [6] invokes Taylor expansions without having control over the terms to be
dropped. in the latter [7] a proof is given that boosts are not implemented unitarily
at the second quantized level, for non-zero regular external potentials. This fact
however, neither rules cut the existence of a boosted instantaneous vacuum nor does
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it imply its boost dependence, as has been observed in [7]. It is then stated in [7]
without proof that instantaneous vacua are boost dependent.

The crucial criterion which needs to be checked is as follows [7]. The time x*-vacuum
of an external field problem with potential A is invariant under a boost y iff the
one-particle space boost operator L(x", x, A) intertwines between the positive spectral
projections of the external field Hamiltonian A(x", A) and the boosted one h{(x°, yA):

PRI ] avy w2 0 ‘ s

8(h(x®, AN L(x®, x, A) = L(x°, x, A)B(h(x°, A)).

This relation seems unlikely to be valid, since (even for A=0) the boost operators do
not intertwine in the naive sense between the c-number Hamiltonians of the original
and the boosted dynamics (cf equation (2.19)), ie. h{x° yA)L(x% x, A)#
L(x°, x, A)h(x°, A). Nevertheless for zero external potential the projection-intertwining

relation holdg and in fact Il‘l"In!IFE the well known hoosgt invariance of the free field

Witevtitepd atsited Geaxvs saa adaww ATS RAdn VY WAL ERARMS VY AA LALIAAOL RALY AL ASARANL TEAV iiw iawEvs

vacuum. One therefore needs to construct an explicit A # 0 counterexample to the
projection-intertwining relation in order to confirm boost dependence of instantaneous
vacua and refute their reported boost invartance. Here we will do so in a simple 2p
setting.

We study the Lorentz transformation properties of the 1p: for a class of very simple
and explicitly solvable models. They describe chiral Dirac fermions in 2D space-time
influenced by an external electromagnetic potential of compact support. Related models
have been investigated in [8, 9]. Our findings are this: an 1p1 exists for very special
external fields and then in general for few discrete instants of time only. This contrasts
with the ap case, where an 1p1 has been established for a large class of even irregular
potentials [7]. Furthermore, whereas boosts are in general not unitarily implemented
in 4D [7], they turn out to be implementable in our case. However, we find that they
destroy the property of an (exceptional) model to possess an 1p1. A fortiori boost
invariance of instantaneous vacua can definitely be ruled out in 2D space-time, as a
boosted vacuum in general does not even exist. Furthermore we make it explicit that
existence of an 1pr is gauge dependent.

2. The c-number model

Projecting the zero mass Dirac equation in 20 Minkowski space-time with a minimally
coupled external electromagnetic potential onto its positive chirality part yields the
following wave equation:

i;%w(x(], xl)= {—i%—A(xo,x')}\P(xo,x'). (2.1}

Here A €,(R*:R) (i.e. A is continuous and of compact support} is assumed. The
connection of A with the Cartesian coordinate frame components of the electromagnetic
potential is: A=A+ A,. Equation (2.1) is interpreted quantum mechanically as an
evolution equation in 3= L*(R:C), the Hilbert space of Cauchy data to equation
(2.1} with the usual scalar product:

(f8)= J dx' f(x'y*g(x").
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The corresponding Hamiitonians we denote as follows:
a
h(x’, A):=—i P A(x’, Q) (2.2)

d
hg=—1— .
o i ax (2 3)
Here @ is the multiplication operator (Qf Hx) = xf{x).
The dynamics {u(x", A)/x"c R} on %, associated with (2.1) via the linear mapping
u(x®, A):¥(0; )~ ¥(x° -), can be given explicitly:

u(x®, A) = ¢! g =ixh (2.4)

x0

y(x“’,x")==J dEA(g £+ x' —x7). (2.5)

0

In order to prove equation (2.4) one simply checks that the given expression for
u(x°, A) solves the defining evolution equation

i _d,. u(x®, A)=h(x° A)u(x°, A)
dx”

and obeys the initial condition u(0, A) = Id,.

The incoming Moller wave operator with respect to the free (A =0) dynamics is
defined by W:=s-lim u(s, A)* e "™ for - —00, From equations (2.4) and (2.5) we
conclude that in terms of w(x) —j' d&é A £+ x) it reads

W =@ (2.6)

Obvicusly W is unitary, a property we shall need later on. This unitarity can be traced
back to the finite interaction time inherent in A< %, (R*:R).

Let us now consider the action of the restricted Lorentz group LI = (R, +) of boosts
on various objects of the c-number model. (For the sake of conceptual clarity we shall
exclusively adopt the active point of view and never bring into the discussion a change
of coordinates.) The primary group action is the boost representation of {R, +) on
Minkowski space:

(()(x)o) (cosh(x) sinh(x))(xo) (27)
X = ={ . . ,
X (x)! sinh(y) cosh(x)}/\x'
Associated with (2.7) is the chiral boost representation of (R, +) on the function space
€'(R*:C) defined by

(x¥)(x) =X W(x 'x). (2.8)

Note that x~'x = (—x)x. The factor e*/* derives itself from the original spinor rep-
resentation of the Lorentz group before projecting onto the positive chiral component

and it will turn 1t ta he dacicive far ahtaining nunitary hnnct anaratare P
and it Whir turn out to o€ GECISIve 10T Oolalning uniiary oo0st opéralors i 7.

For A=0 only the representation (2.8} stabilizes the set of solutions to equation
{2.1), while this is not the case for A # 0. The general case is this: iff ¥ solves equation
(2.1) then ¥ solves equation (2.1} with A replaced by yA.

(xA)(x)=e*Alx'x). (2.9)
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Therefore the Hamiltonian family generating the time evolution of ¥V is given by
{h(x°, xA)/x°€R}.

By means of formula (2.4) for the time evolution operators u(x°, A) for any
A€ 6y(R*:R) we can derive an explicit formula for the boost operator L(x°, x, A) on
%, which is defined to map the x°-Cauchy datum ¥(x°, -) of a solution to equation
(2.1) onto the x°-Cauchy datum (y¥)(x° ) of the boosted solution. To do so we
express, by means of equation (2.4}, an arbitrary solution to equation (2.1} in terms
of its Cauchy datum at time zero:

W(x% x') = "> (0, x! —x9). (2.10)
Now let y operate on ¥. By means of equation (2.10) we get

(Y )", x1) = X2 (0, eX(x" — x)). (2.11)
Here v € %,{R*:R) is given by equation (2.5) and (xy)(x)= v(x 'x). Observe

X/ (0, * (x' ~x)) = {e T ME(OW(O, ) Hx') (2.12)
where 2(x) is the unitary operator on 3 defined by

(S (x") =¥ 2f (e¥x'). (2.13)

~(x) is known from non-relativistic quantum mechanics as the squeezing transforma-
tion [10] of the canonical pair (Q, P = hy):

I(x)*QEx)=e*Q E(x)*PL(x)=¢"P. (2.14)
Equations {2.11) and (2.12} can be combined into
(X} (x) = {0 eI (3)W(0, - H(x). (2.15)

Now we express (0, ) in (2.15) by means of equation (2.4) in terms of ¥{x° -).
Thus we obtain the boost operator explicitly as follows:

L(x%, x, A) = 070D ¢ Thg( 1) o1k ¢ T1700D), (2.16)

L(x° x, A) is unitary due to the factor e*/?

traced back to the representation (2.8).

Obviously L(x° x, A} depends on the external potential A and x°. For A=0 the
mapping y — L{x°, x, 0) constitutes a unitary representation of the boost group (R, +)
on ¥, which thus appears as a symmetry group of the model. For A #0 it does not
so: L(x° x,, A)L{x°, x;, A) # L{x°, x2+ x,, A). On the energy momentum operators
P%=h,:= P' of the free model the boost operator L(x° x, () implements, due to
equation (2.14), the boost transformation of a right upper or left lower light-like vector:

which appears in 2(x} and which can be

L(x°, x, 0)*P*L(x", x, 0) =e*P*, (2.17)
From equation (2.17) the positive spectral projection intertwining relation
L(x°, x, 0)*8(P°)L{x", x, 0) = 6(P°) (2.18)

is immediate due to e* > 0. For non-zero A the boost operator L(x°, y, A) intertwines
between h(x°, A) and h(x° xA) in the following non-naive way:

T ] A\ b

h(x°, YA) = {(ia%; L(x", . A)) FL(x° x, AYh(x", A)JlL(x“, X, A)*. (2.19)

Equation (2.19) follows by differentiating the equation u(x’, xAVL(0, x, A) =
L{x", x, A)u(x", A) with respect to x".



Boost action on external field problems 2741
3. The second quantized model

The quantization of a linear spinorial wave equation like equation (2.1) may be done
in an efficient and precise way by means of C*-algebraic techniques [1, 7-9]. We shall
do so. The primary concept is the car-algebra % associated with the Hilbert space
of the c-number model and the canonical equal time anticommutation relations [11].
¥ is generated by the image of # under an antilinear injection a of # into % and its
unit element is denoted ey . The anticommutation relations state that for any f, g in
5 it holds that

{a(f), a(g)*}=(f g)eu {a(f), a(g)}=0.

Any orthogonal decomposition of % = %" @ generates a quasifree, pure, gauge
invariant state wp on %U:

wp(a(fy)...a(f)a(g)* ... a(gn)*) =8, det((f, Pg))- (3.1)

Here P is the orthogonal projection of % onto #'. The Gel'fand-Naimark-Segal
{GNs) construction assoctates (up to isometrical equivalence) with w, a representation
Mp: N> Z(Fp) of A in the concrete C*-algebra of linear bounded operators on a
representation space Fp. We denote ¥p{f) =T (a(f)). Inspection of w,p,-, with u
being a unitary operator on #, shows that the representation a(f)— ¥p(u*f) is
isometrically equivalent with I1, ., i.e. there exists an isometry I': Fp = F,p,» with
TWp(u*f) =¥ p- ().

In order to construct a quantum field ¥ which solves equation (2.1) in the distribu-
tional sense one may identify the restriction of ¥ to an arbitrary initial time with ¥,
and let the time evolution {2.1) act on it in order to define a Heisenberg picture field,
This amounts to defining for all f in 3 (with initial time zero) [1]):

WX, £ 1= ¥ p(u(x’, A)*f). (3.2)

The proper choice of P is drawn from the condition that ¥[x°, -] coincides with the
free relativistic positive energy zero mass field at times before the external potential
acts on it. Thus the Lehmann-Synzanzik-Zimmermann (Lsz) initial condition

Wp(u(x’, AYS) —¥au(x’, 0)*f) =0 (3.3}

is assumed to hold for all x°<—T <0 [7]. Here T>0 is chosen to obey supp{A)c
[T, TIxR and P,:=6{h;) is the positive spectral projection of the free ¢-number
Hamiltonian. Equation {3.3) fixes P:= P,,:= WP, W* with W being the incoming wave
operator from equation (2.6).

We shall now study the Heisenberg picture dynamics, which is encoded into the
quantum field ¥[x°, f]:= Ta ( u(x®, A)*f). The prime question is whether an associated
Schrédinger picture exists, i.e. whether there exists a unitary dynamics
{Tpin(uix®, A)}/x"€R} on the representation space %;_, which obeys for all f in %
and all x*in R

Tp (u(x°, A)* 5 ()T 5 (u(x®, A)) = W[x°, f]. (3.4)

To decide on the existence of I'p {u(x°, A)) we obsetve that (for any orthogonal
projection P and any unitary u) a unitary I'p(u) exists iff I , and I, ,» are isometrically
equivalent. Now two representations I, and Il s, are isometrically equivalent iff P, —
P,e HS, i.e. are Hilbert Schmidt operators [12]. Obviously Py~ P,& P — P,e HS
defines an equivalence relation among the orthogonal projections of . (An equivalent
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condition to P,— P, HS reads: P\{lds— P,)c HS and P,(Ids— P,) € HS [13].) Thus
e and II,.e a7 ux%a) are isometrically equivalent iff u(x°, A)P,u(x° A)*~ P,.
Expressmg u(x®, A) by (2.4) and P;,:= WP, W* by (2.6) yields the equivalent condition
Py~ e4"Q)p ¢ Ax%0) yith A(x°, Q)= y(x°, Q) - w(Q)+w(Q —x"Id;). Whether
this latter condition is fulfilled can be decided for Ae €5 (R*:R} by means of the
following criterion [14]. Let ¢ €7 (R:R) with a'c €5 (R:R). Then it holds that
P~ VP e " Qg g(c0) —a(—0) e 252, It is immediate to check that, due to
Ac 63(R*:R), the functions y(x° +) and w(-), and therefore A(x°, -) are also of the
type €5 (R:R). Thus the equivalence ¢'**>@ p, ¢ 4" p_ s seen to hold for all
x°. In this way we conclude that the Heisenberg picture time evolution
P[0, -]~ ¥[x" +] is unitarily implemented at all times, thereby giving rise to an
associated Schrodinger picture.

An (instantaneous) particle interpretation at time x° for a quantum field ¥ with
the dynamics {#{(x° A)/x"cR} is said toc exist if ¥[x°, -] is isometrically equivalent
10 Woini<®.an( ) [3,4, 7]. An ample discussion of the physical reasoning which leads
to this definition is given in [4]. The crucial fact is that the ‘frozen’ ¢-number dynamics
(¢4 4O - R} tangential to {u(x°, A)/x®< R} at time 1, is unitarily implemented
on ¥[1, -] such that its generator is bounded from below and has a normalizable ground
state vector, iff ¥'[1, -] is isometrically equivalent to ¥os.40( ") [3, 15].

In order to see whether W has a particle interpretation at time x° we have to chec
u(x, A) P u(x’, A)* ~ 0(h(x° A)), or more explicitly u(x®, A)WP,W*u(x°, A)*~
6(h(x°,A)). Since we already know from the unitary implemeniability of the time
evolution that u(x°, A} WP, W*u(x", A)* ~ P, it suffices to check P,~ 8(h(x°, A)). We

now make use of the unitary equivalence between h, and h(x°, A) which reads

h(x°, A) =gl*:"Qp, ¢ mixlx"D (3.5)

'R‘

a(x®, x1) = J Az A(X°, £). (3.6)
0

Thus Py~ 8(h(x°, A)) amounts to Py~ e'*""@ Py e **%Q Applying the criterion of
Hermaszewski and Streater [14], we obtain due to Ae €5 (R*:R): Py~ 8(h(x°, AN}
§77 dx! A(x°, x')e 2% Z. Therefore the field ¥ has an 1p1 in the case of very special
choices for A and at discrete instants of time only. In particular the existence of an
1Pl is unstable under gauge transformations.

If ¥[x® -] has a particle interpretation, the instantaneous vacuum Q(x°) with
||Q (x| =1 exists. Q(x°) is the ground state to the second quantized dynamics, which
is obtained by lmplementmg {e" ="t e R} on W[x", - ] and is, up to a phase, defined
by decomposing ¥[x° -] into instantaneous particle destruction and antiparticle
creation parts Wx®, f]=W(x°, 8(#{x°, A))f]+¥[x" 8(—h{x’, A))f]. Then for aii f
in & [3]:

Y[x°, 0(h(x°, A))f1Q(x°) =0 (3.7
W, 8(—h(x°, A))f1*0(x°) =0. (3.8)

Note that due to equation (3.5) Ids — 8(h(x°, A))=0(—h(x’, A)).

We shall now study the action of a boost y on the various objects of the second
quantized model. The primary action is the boost action (2.8) on the quantum field
V. In the smeared form of the present formalism this reads

(xW)[x°, f1:=Wx®, L(x, x, AY*S1. (3.9)
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x¥ has the dynamics {u(x°, yA)/x°<R}. Its incoming asymptotic field is, due to the
compact support of A, again a free relativistic positive energy zero mass field.

Let us see whether (xy¥)[x", -] and ¥[x° -] are unitarily equivalent. To this end
we have to check

L(x° x, A)u(x®, A) WP, W*u(x°, A)*L(x°, x, A)* ~ u(x®, A) WP, W*u(x°, A)*,

Since u(x®, A) WP, W*u(x° A)*~ P,, it suffices to check L(x°, x, A)P,L(x°, x, A)*~
Py. Due to the compact supports of y(x’, -} and yy(x°, - } this condition can, by means
of equation (2.16), be further simplified to L(x° x, 0)P,L(x°, x, 0)* ~ P,. Equation
(2.17) implies that a free boost L(x°, x, 0) stabilizes the positive and negative spectral
parts of h, and therefore L(x°, x, 0) P,L(x°, x, 0)* = P, holds. Thus we have arrived at
the result that for Ae €5(R*:R) boosts are unitarily implemented on the field ¥ at
all times. This stands in sharp contrast to the absence of implementability of boosts
in the case of a massive Dirac field in 4D space-time with a non-vanishing regular
external field [7].

chtowe investigate the behaviour of an 1p1 under boosts. Let Ae €5 (R*:R) obey
for all x™:

4o
'!‘ dx! A(x°, x")=0. (3.10)
Because A is continuous, equation (3.10} is necessary and sufficient for ¥ to have an
1p1 for all x°. Since the boosted field ¥ has the dynamics {u(x°, yA)/x° e R}, y¥[x", ']
has an 1Py at time x° if it is isometrically equivalent to Wy, +° .4+ ). The boosted field
at time x° is in the GNs-representation characterized by UP,U* with U=
L(x°, x, A)u(x®, A)W. Thus ¥ has an 1p1 at time x°iff

UPU* ~ 8(h(x°, xA)). (3.11)

Since we already know from the implementability of boosts that UP,U* ~ P,, equation
(3.11) is equivalent to Py~ #(h(x° yA)), which holds iff

=
—
m
2
3
i
—
(%)
paly
()
R

That equation {3.12) is in general not valid can be seen as follows. If (3.12) were
to hold for all x° and y, the integral would have to be zero for atl x® and x by continuity.
If e differentiate (3.12) with respect to y at x° =y =0 we obtain as a consequence

I dx'x (a/ax")A(O x'}=0. Take now for instance A{x%, x"}: f(xo)g(x +x!) with

fiOT-ZET0 J, g€ Cgo (n Q} such that m’g‘.in n-f—v \_-_a(r \ and u'(\' \>n holdc f'nr

x'> 0. Then equation (3.10) is valid for all x°. Yet integrating x’(a/ axﬂ)A(O, x") yields,
due to x'g(x") =0,

+ac 3 +oo

J- dx' x' Py A0, xY)=£1(0) J. dx' x'g{x")#0

—o X o
which thus rules out equation (3.12). In this way we conciude that even for a poieniiai
which causes ¥ to have an 1p1 for all times this property in general does not hold for
the boosted field y.

Finally we comment on the exceptional choice for A such that both ¥[x°, -] and

x¥[x°, -] have an 1p1. Here one can study the relation between (x°), determined by
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equations (3.7) andd (3.8), and the instantaneous vacuum x(x") of y¥[x°, - ]. xQ(x"
obeys for all fin :

(x )’ 8(h(x%, xAN f I QUx") =0 (3.13)
(x W)’ 6(—h(x°, xA) [T xQ(x") =0. (3.14)

Equations (3.13) and (3.14) are by definition of y'V equivalent to the following ones,
which hold for all f in 3

W[x?, L(x° x, AY*0(h{x°, xA) f1xQ(x%) =0 (3.15)
¥x® L(x® x, AY*8{~h(x°, xA) S T*xQ(x") =0. (3.16)

The boosted vacuum yQ{x") coincides with Q(x°) (up to a phase) iff the positive
spectral projections involved in (3.7) and (3.15) coincide. Thus the condition for boost

invariance of 0{x") reads
L(x°, x, A)*6(h(x°, YA) L(x’, x, A) = 8(h(x", A)). (3.17)

Since 8(h(x° A))~ Pyand L(x° x, A)P,L(x°, x, A)* ~ Py equation (3.17) has a chance
of being fulfilled only in the case 8(h(x°, xA))~ P,. This latter equivalence, however,
has been ruled out as being generally valid.
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